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Abstract

The radiation field over a broken stratocumulus cloud deck is simulated by the
Monte Carlo method. We conducted four experiments to investigate the main factor for
the observed shortwave reflectivity over the FIRE flight 2 leg 5, in which reflectivity
decreases almost linearly from the cloud center to cloud edge while the cloud top height
and the brightness temperature remain almost constant through out the clouds. From our
results, the geometry effect, however, did not contribute significantly to what has been
observed. We found that the variation of the volume extinction coefficient as a function
of its relative position in the cloud affects the reflectivity efficiently. Additional check of
the brightness temperature of each experiment also confirms this conclusion.

The cloud microphysical data showed some interesting features. We found that
the cloud droplet spectrum is nearly log-normal distributed when the clouds were solid.
However, whether the shift of cloud droplet spectrum toward the larger end is not
certain. The decrease of number density from cloud center to cloud edges seems to have

more significant effects on the optical properties.



Chapter 1

INTRODUCTION

The recent concern about the possible effects of anthropogenic pollutants, such as
CO,, CH,, CFC, etc., on the climate change has urged the study of feedback mechanisms
within our climate system. Cloud feedback mechanisms, which include changes in cloud
type, coverage, and cloud droplet size induced by the change of some other climatic
factors, are among the least understood feedback mechanisms. Yet, the importance of
the effects of clouds on the radiation budget has been acknowledgcAd. The magnitude of
the global shortwave, longwave and net radiative forcing are all one order greater than
that of CO, doubling (Ramanathan et al. ,1989). This implies that small changes in the
cloud radiative forcing could result in a significant alternation of the Earth's radiation
budget.

From a radiation budget point of view, stratus and stratocumulus clouds have
long been recognized for their importance to the climate system because of their large-
area coverage and longevity. Both of the stratus and the stratocumulus clouds are
typically found on the eastern rim of sub-tropical high pressure systems: for instance, the
west coast of California in the summer, southern Peru, northern Chile, and south west
Africa. Yet, the spatial scales of stratocumulus and stratus clouds are different: an
individual stratocumulus cloud ranges around 10°km? while the stratus deck could
extend to 10°km? in area. -

However, one of the defects in all the present general circulation models (GCM)
is their inability to calculate radiative transfer through the broken cloud field, which is a

feature of stratocumulus clouds. Most of the GCMs assume that a homogeneous cloud



deck covers the entire grid point once the grid point is saturated. It is postulated that the
radiation budget over a broken cloud field would differ significantly from its
homogenous counterpart.r

Many efforts have been devoted to the investigation of radiative transfer through
inhomogeneous clouds. Blerkom (1971) studied how the striate cloud-top structure
which could result from convective motion in the stratiform clouds affects the shortwave
radiation field. He found that the reflected radiance depends on both the degree of
striation and the incident angle.

McKee and Cox (1974) investigated the reflected irradiance of a cubic-shaped
cloud and compared it with that of horizontally semi-infinite clouds. Their analysis
showed that the incident solar flux on the vertical sides of cubic clouds has a significant
effect on the reflected irradiance.

Welch and Wielicki (1984) surveyed the effects of cloud shapes and cloud
alignment patterns on radiation. They studied the bulk reflectivity at visible wavelengths
as a function of the incident solar zenith angle and fractional area coverage for four
different shapes of clouds aligned in a linear or hexagonal array. Their conclusion was
that plane-parallel calculations are not satisfactory at most values of cloud cover. Hence,
the importance of cloud shapes and cloud alignment patterns to the radiation field is
assured.

Yet, despite the inclusion of cloud geometry effects, these previous studies
assume the optical properties, especially the visible volume extinction coefficient, remain
constant in clouds. However, it is conjectured that turbulent motions in stratocumulus
clouds, rising motion in the cloud center and sinking motion at the cloud edge, could
result in horizontal and vertical inhomogeneity of cloud microphysics properties. Thus,
the volume extinction coefficient might vary horizontally and vertically in stratocumulus

clouds.



Furthermore, these previous studies mainly focus on the study of bulk reflectivity.
This is understandable because, from a climate point of view, it is the bulk reflectivity of
clouds that relates directly to the radiation budget. Besides, no in situ measurements of
cloud point reflectivity, which is defined as the upward flux at a point above the cloud
dividing by its associated downward flux, were available then.

The Marine Stratocumulus Intensive Field Observations (IFO) phase of the First
International Satellite Cloud Climatology Project Regional Experiment (FIRE) in the
summer of 1987 collected precise and interesting data of stratocumulus clouds. Among
these data, we are primarily interested in the change of the cloud point reflectivity along
the flight path detected by the NCAR Electra on June 30. The cloud point reflectivity
changes drastically from cloud edges to cloud centers in a wave-like form with troughs at
cloud edges and ridges at cloud centers. In contrast, the cloud-top height remains almost
constant except a sharp decrease of height at cloud edges.

We can not help but ask the question: is this a result of the shape of the cloud?
Or are some other factors associated with this phenomenon? Note, that here the bulk
reflectivity is not the concern, but rather the cloud point reflectivity as a function in
space.

The Monte Carlo method is the only known computational method capable of
simulating radiative transfer through media in which complicated inhomogeneity is
present. The reason is that, unlike the other computational methods for atmospheric
optics, the Monte Carlo method simulates the radiation field by tracking photons, which
gives the Monte Carlo method flexibility in dealing with complicated inhomogeneity in
the media. Thus, for cases like simulating the cloud point reflectivity over broken cloud
field with the change of cloud optical properties considered, the Monte Carlo method is
indeed the only choice. As a matter of fact, it terms out that tracking photons is the easy
part of the simulation whereas specifying the inhomogeneity of the cloud field and

discussing the statistics of results are more challenging.



Chapter 2 briefly describes the basic concepts and the equation of radiative
transfer in atmospheric science. The theory, procedures, and statistics of the Monte
Carlo method are also illustrated for their application to simulations of the radiation field
of both homogeneous and inhomogeneous clouds.

Chapter 3 introduces the instruments used in the IFO phase of FIRE, and also the
general cloud conditions when the data was collected. Some basic arithmetical
calculations impiied in the data are shown. The data of the cloud microphysics
properties and the cloud radiative filed are discussed.

Chapter 4, first of all, briefly describes important concepts about the Mie
scattering code, the hemispheric mean technique, and the flux extrapolation scheme.
These three techniques help the fulfiliment of our simulations of the cloud radiation field
and the comparisons between simulation results and observational data. Second, it lists
all the constants and variables in the simulations. Detailed display and discussions of our
simulation results are then demonstrated. A concise conclusion of this study is presented

in Chapter 5.



Chapter 2

Computation Method

In the field of atmospheric radiation, the equation of transfer, which can be solved
analytically only in some special cases, is noted for its mathematical complexity. Thus,
efforts have been made on the development of computaﬁonal procedures.

Among these techniques, the Monte Carlo method is most capable of simulating
the radiative field of horizontally inhomogeneous clouds, especially when the cloud
geometry and the horizontal variation of the volume extinction coefficient are both
considered. Therefore, the Monte Carlo method is employed to simulate the radiation
field of stratocumulus clouds in this study. Chapter 2 will briefly review the basic
concepts of the equation of transfer, and the theory, procedure, and statistics of the

Monte Carlo method.

Intensity (radiance), in units of energy per area per time per frequency and per
steradian, is a basic radiometric quantity in the radiative transfer process. Even though
intensity is a scalar, a directionality is implied in its definition. Figure (2.1) is a
schematic diagram of the vectors related to intensity. I, (r,®) denotes the intensity of a
pencil of light at position r with a wavelength A pointing with a direction ® (® is an unit
vector) at point A. However, as the pencil of light passes through the medium from A to

B, its intensity changes to I, (r+dr,®), where dr = wds and ds is the infinitesimal

distance between point A and point B..



I ( r+dr,(D)

Figure (2.1) A schematic diagram for a beam of light,, intensity I, (r,®) at point
A, passes through a medium from point A to point B and its associated directionality in an

arbitrary 3-dimensional coordinate.



Compare the intensity at point A with the intensity at point B. One will find out

that the difference between I (r+dr,) and I, (r,0),
dl, (r,0)= L (r+dr,0)-1, (r,) (2.1,

is a result of loss and gain of intensity from three different mechanisms.
As the light beam originally with a value I, (r,®) traverses through the medium
from A to B, it is attenuated because a portion of the light beam is absorbed or scattered

out into another direction by the medium. The monochromatic volume extinction

coefficient b, (r), which is the sum of the monochromatic volume scattering
coefficient by, ; (r) and the monochromatic volume absorption coefficient b, (r),

characterizes the amount of attenuation. Note b, 5 (r), by 3 (r), and by 4 (r) are all

b (r)
in units of per length. The single scattering albedo @, is defined as —seath > Hence, if
bcxt,k (r )
only the loss term is considered,
dIj (r,®) = -by, 5 (1)1 (r,w)ds (2.2).

The gain mechanisms add complexity to this problem. We will introduce the
concept of a light beam as a packet of photons in order to simplify our discussion.

In 1905, Einstein proposed the photon theory: basically, energy of
electromagnetic wave behaves as if it is concentrated in photons instead of spreading out
uniformly over the wave fronts. Based on this theory, a beam of light can be seen as a
packet of photons. Apply this notion to radiative transfer, the interaction between the
electromagnetic wave with media which the wave passes through becomes photons
colliding with particles of the media.

Previously, ds is denoted mathematically as a scalar with an infinitesimal value.

From a physical point of view, we can define ds as a distance much shorter than that of



the mean free path of collisions between photons and particles of the medium. Thus,
within ds, the probability that more than one collision takes place is very small. Then we
can simplify our discussion about multiple scattering which occurs within the path ds.

First, photons which before the collision with particles of the medium propagate
in the direction @' could be scattered into ® after the collision. P(r,0',®), the phase
function, is the probability of this event. Note the phase function is also a function of
position. Therefore, within ds, this gain of intensity in direction @ can be expressed as
bsead IA(T,@") P(r,00',0)d0".

Second, emission of light by the particles in the medium could also contribute to
the gain of intensity. This term could be written as ®(A,r,m).

Combine the three mechanisms above, we can write the equation of transfer as:

2n
o grad L(r,0) = -be AN (r0)ds + bscar AR [ T, (r,0") P(r,0', 0)do
0

+ O r0) (2.3)

For homogeneous media, in which bey ), bscat,l, P and @ are not functions of r,
Equation (2.3) may be solved analytically. However, solving this integral-differential
equation analytically thus to obtain the radiation field is almost impossible for
inhomogeneous media. Therefore, many efforts have been devoted to solving the
equation computationally. However, most of the computational procedures are limited to
the plane-parallel atmosphere approximation, in which all the variables in equation (2.3)
only varies with height.

Horizontal homogeneity might be a good assumption for the simulation of the
radiation field of stratus, which often covers area of 106 km2. However, this assumption

is not suitable for stratocumulus clouds, in which cell structures are often observed. The



next section elaborates on the theory, procedure and statistics of Monte Carlo method and

explains how it simulates the radiation field of stratocumulus clouds.

Instead of solving the equation of transfer directly, the Monte Carlo method
approaches the problem of radiative transfer by modeling stochastic collisions between
photons and particles. By direct simulation of photon trajectories in the cloud, the
reflectivity or transmissivity of the cloud becomes one of determining what percent of
the incident photons are reflected or transmitted under the premise that a sufficient
number of incident photons has been input.

For simulating an infinite, homogeneous, non-absorbing cloud deck, in which the
monochromatic volume extinction coefficient (abbreviated as the extinction coefficient in
the following text), phase function are constant through out the whole cloud deck, the
Monte Carlo method could be less efficient than other computational method because it
costs computer time for optically thick clouds. Nevertheless, a close look at the way how
the Monte Carlo method simulates light going through an infinite homogeneous cloud
deck provides insight to the method. The theory, computational algorithm and statistics

are discussed in the following sub-sections.

&.2.1 Theory

The Monte Carlo method takes full advantages of the photon theory in solving the
problem of radiative transfer. Since a beam of light behaves like a packet of photons, we
can simulate photon collision processes, namely, photons colliding with cloud droplets in

this case, and obtain the radiation field. The whole simulation is only a photon tracing



scheme in which only simple geometric computations are necessary. The idea of the
Monte Carlo method is straight forward; however, in order to simulate collision
processes faithfully, specifying the optical properties of cloud droplets becomes decisive
to simulation results. The optical properties necessary to be specified for a non-
absorbing cloud deck, in which the single scattering albedo is equal to 1, are the mean
free path, the probability density function for the free path, the asymmetry factor, and the
probability density function for the scattering angle.

Iy, the mean free path of collisions between a photon and a cloud droplet, is
defined as 1/ by p. beyy s Stands for the extinction coefficient, which is the integral of
the volume extinction cross section of all cloud droplets over a unit volume. In another
word, when paving all the cloud droplets of a unit volume onto a unit surface, bext.s,

equals the ratio of integral of cross section to the unit area. Thus, the inverse of by, ,,

stands for the height of a unit-area-based volume for which the integral of cross section is
equal to one unit area. Hence, as a mean, when a photon travels downward from the top

~of this volume, it will collide with one cloud droplet before the photon leaves the
volume. That is why /, is defined as such.

The Poisson process suits to describe collisions between a single photon and
cloud droplets, because these collisions possess the necessary and sufficient properties of
the Poisson process. (1.) They don't have memory to previous collision events. (2.) Tht;,
probability that a single collision would occur in a small region is proportional to the size
of the region and does not depend on the number of collisions outside this region. (3.)
The probability that more than one collision would take place in such a small region is
negligible.

The probability distn'butidn of the Poisson random variable x, representing the
number of outcomes occurring in a given interval or a specified region denoted by t, is

given by



x ——
(vt)"exp(-vt) x=0,1,2,... 2.4),

p(x,vt) =
x!

where v may be interpreted as the mean number of events per unit time or per unit

volume. Applying this formula to collision processes, we will get equation (2.5)

t t
(’I—)XCXP('I—)
P(x:_)=_o'—-0_‘» x=0,1,2,... 2.5),

in which x is the number of collisions within the region, t is the size of an a region.
The free path [ is defines as the distance between two successive collisions. For

an arbitrary distance t, the probability that the free path / exceeds t, p.(/>1), equals the

probability that no collisions occur within t, p.(/>t)= p(O,-It—) = cxp(-li). Therefore,
0 0

the cumulative distribution function p (0 </ <t) becomes

p0SI<t) =1- p(I>t)=1- cxp(-f-) Q).
0
We may differentiate equation (2.6) with respect to t to obtain the probability density

function for free path:

p(l) = L exp(-—) @7
10 10

The asymmetry factor is defined as g = cos© =21—,f°2"fo' P(cos®)cosOsin® dO d¢
T

, where P(cos®) is the phase function and © is the zenith angle and ¢ is the azimuth
angle of the scattering vector (©,0). The scattering vector is defined relative to the
direction in which the photon propagates before a collision. © is between 0 and 7/2 for

forward scattering, between n/2 and = for backward scattering. ¢ is 0 when the scattering



vector points at the positive x direction of our arbitrarily defined (x,y,z) coordinate, and
¢ increases counterclockwise to 27.

The Henyey-Greenstein phase function is used in this research:

P (cos®) = (1-gd) /(1 +g? - 2g cos@)3? (2.8)

2.2.2 Computational Procedure

Figure (2.2) is the flow chart of the procedure of the Monte Carlo method for an
infinite, homogeneous, and non-absorbing cloud deck. From the chart, the essence of the
Monte Carlo method is .no more than tracking incident photons. The only condition is
that we must know g, [, @ first in order to proceed tracking.

®, determines the probability that a photon is absorbed or scattered when it
collides with a cloud droplet. For visible radiation through clean water clouds, )=
0.9999. Thus, for optically thin water clouds, ®, = 1 is 2 good approximation.

From the previous section, we know that the probability density function for the
free path, /, is an exponential distribution (see equation (2.7)). Since the integral of
equation (2.7) from / = 0 to ] 5o is equal to 1, we can define a one-to-one relation for a
random number R; ;, whose value is uniformly distributed between zero and unity, and a

free path as follows:

I=lpyIn(1/R;) (2.9).
In other words,
=1 I
R,= —exp(——)dl’ (2.10).
l I’-—[O 10 IO
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the photon is
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the location of the (i+1)
collision is calculated
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y;cs,. the scattering vector
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the direction of
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3

is generated
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Figure (2.2) The flow chart for simulating the reflectivity and transmissivity for a

infinite, homogeneous, non-absorbing cloud deck. g, Iy, @y, and b, ; are known.



Free paths are thus generated by the use of equation (2.9).

The phase function, which is the probability density function for the scattering

process (Zl— [ ], P(cos@)sin® dO do = 1), is then divided into 1000 equal probability
T .

£

bins. Each bin has the same area in the probability density function versus solid angle

diagram. For each bin, we can define a mean angle ©;:

1
O = c05™{ = [0SO the teft margin of the bin) + COSOat the right margin of the bin)) (2.11).

Thus, when a bin is randomly picked up, @, corresponded to the bin is set to be the ©

angle of the scattering vector. ¢ is much easier to obtain: ¢ = 2 nt R; 4, where Riy isa

random number between zero and unity.
By tracking photons, we then can count the number of photons that exit from the
top of cloud, Noysop- The cloud bulk reflectivity, Refy, whose definition is the fraction

of incident radiation reflected, is simply calculated as
Refy, = Nout top / Nin (2.12),

where N, is the number of incident photons.

One important thing worthy of mcntiohing is equation (2.12) does not contradict

to the common definition of reflectivity
Refy = Floyq.40p / Flotop (2.13),

where FTcld'top is the upward flux density (irradiance) at cloud top, and Ficld',op is the

downward flux density at the cloud top.



223 Statisti

Another question arises naturally after equation (2.12). How many incident
photons do we need to input in order to get a satisfying reflectivity? Or how many
incident photons N, are necessary to make the standard deviation of reflectivity small
enough? To answer this question, we have to move our focus from the random walk of
photons inside the cloud to the definition of reflectivity.

In the case of infinite homogeneous cloud, cloud reflectivity at any point, which
is constant all over the cloud, has the same value as the cloud bulk reflectivity.
Regardless of the complicated random walk trajectories of photons, réﬂectivity is the
probability that an incident photon is reflected. From this point of view, an incident
photon being either reflected or transmitted is similar to toss a coin whose chance for
head or tail is uneven; say, head is for a photon being reflected. Thus the Gaussian
approximation to the binomial distribution is applicable to describe its statistics (Welch

and Wielicki, 1984; Lenoble, 1985):
o = [Refy, (1 - Refy) / N;, 1 12 (2.14)

, where G is the standard deviation. The largest value of ¢ for the same number of
incident photons occurs at R = 0.5. When R = 0.5 and 6 = 0.01, N;, is about 2500.

Table (2.1) lists the reflectivity and transmissivity computed by our Monte Carlo
code in comparison with those computed by the doubling method. Only 2500 photons
were input for each Monte Carlo calculation. Our results show good agreement with the
doubling method especially when the optical depth is more than 0.25. Note that we have
listed both the value and the percentage of discrepancies. Special caution is necessary for
those cases with small reflectivity; the percentage of differences may be drastically large,

even though the absolute value for differences are not off much. However, the fact that



tau \ mul 0.1 0.3 05 0.7 0.9
Monte Carlo 0.25] 0.4348] 0.1972| 0.1024| 0.0524] 0.0372
Doubling 04161] 0.1580| 0.0718] 0.0380] 0.0225
Difference 0.0187| 0.0393] 0.0306] 00144 0.0147
Difference (%) 4.49%| 24.85%| 42.64%| 37.86%| 65.33%
Monte Carlo 1.00] 05872 0.3928] 0.2400] 0.1528] 0.1080
Doubling 0.5815{ 0.3857| 0.2405] 0.1502] 0.0967
Difference 0.0057{ 0.0071] -0.0005] 0.0026] 00113
Differece(%) 0.98% 1.84%| -0.20%| 1.74%| 11.66%
Monte Carlo 400 0.7368] 0.6176] 05192 0.4268] 0.3568
Doubling 0.7325{ 0.6173] 0.5193] 0.4295] 0.3482
Difference 0.0043 0.0003{ -0.0001| -0.0026 0.0086
Difference(%) 0.58%| 0.05%| -002%| -062%| 2.46%
Monte Carlo 16.00] 0.8760| 0.8188| 0.7896] 0.7504] 0.7000
Doubling 0.8810] 0.8300] 0.7866] 0.7462] 0.7072
Difference -0.0050] -0.0112] 0.0030] 0.0042] -0.0072
Difference(%) 057%] -1.34%| 0.38%] 057%| -1.02%

Table (2.1) A comparison of reflectivity calculated by the Monte Carlo method
and the doubling method. The difference is calculated by reflectivity (Monte Carlo
- method) minus reflectivity (Doubling method). The difference in percentage form is
calculated by dividing the difference of the two methods over the reflectivity calculated by
the doubling method. i, is equal to the cosine of the incident zenith angle. In all of these

calculations, @, =1 and g =0.75.



the larger discrepancies occur at all the small optical depths (when the optical depth is
0.25) or reflectivity is less than 0.1 instead of when the reflectivity is around 0.5 (for
example, when the optical depth is 4 and the cosine of the incident zenith angle is 0.5, or

when the optical depth is 1 and the cosine if the incident zenith angle is 0.1) suggests

some deficiency in the application of the Gaussian statistics to the Monte Carlo method.

Our use of the term "horizontally inhomogeneous cloud” primarily denotes that
bexia varies horizontally or / and cloud geometry needs to be considered. The logic of
the procedure for horizontally inhomogeneous clouds is pretty much the same as that for
the homogeneous cloud deck. The differences are described below.

When b,,, is not constant, the mean free path is not constant either. For
simplicity's sake, consider first a photon traveling from medium A to medium B (Figure
2.3.a), where b,y 4 is the extinction coefficient for medium A, and b, 3 g for medium

B. Both b,y A and by p are constant. Following equation (2.8), a somewhat more

complicated expression for the photon free path / can be determined:

| = OF = OM + MF

b
=OM (1 -—22Ay 1 1n(—1-), (2.15)
bext,l.B bcxt,)\,B xv

where R; is a random number between zero and unity.

PREGEDING PAGE BLANK NOT FiLMED



medium A, b,

medium B, b,

F’

Figure (2.3.a) A schematic diagram of a free path: O is the position of the (i-1)
collision; M is the interface point of medium A and medium B in the free path; F' is the
position of the i collision. F is the i collision location if the free path is not calculated

discretely.

medium A, b,

medium B, bm9

F’

Figure (2.3.b) A schematic diagram of a free path: O is the position of the (i-1)
collision; M is the interface point of medium A and the clear region in the free path; M'is
the interface point of medium B and the clear region in the free path; F is the position of

the i collision.



If bey, ) is not constant, one of the possible way to handle the free path is by a
discrete method. We can divide the medium into boxes in which by, j is a slow varying

variable. Thus, beyy can be seen as a constant in each box. Finally, / can be solved

exactly the same way as equation (2.15). Unfortunately, calculating [ discretely uses
considerable computer time. In this research, we use the extinction coefficient at the (i-
1) collision as an average extinction coefficient between the (i-1) collision and the i
collision. In another word, we use OF as the free path of OF. The drawback of this

simplification is discussed in Chapter 4.

As for the consideration of cloud shapes, it is actually an extreme case of bey, ),

variability. We define the cloudy region as by, 3 # 0, and the clear region as by, 3= 0.

Thus, we can draw an imaginary interface between the cloudy and clear regions, which
depicts the shape of clouds. Even though in the real world there is no such thing as an
absolute interface to separate the clear and cloudy regions but a sharp decline of liquid
water content (LWC) at the edge of clouds, we think this way of defining cloud shape
serves as a satisfying approximation to study the effects of cloud geometry to the
radiation field.

Hence, when photons travel in the clear region, they would never collide with any
cloud particles. Take the previous example of a photon traveling from medium A to
medium B, and insert a clear region between medium A and medium B (Figure 2.3.b).

The free path is just:

| = OF = OM + MM +MF

— b _
=0OM (1 - =2+ 1 In (—Rl—) +MM' . (2.16)

bext B b ext,B i




Irregularity is the trade mark of cloud shapes; however, the general pattern of
cloud shapes is of the main interest in our study. We can divide the cloud shapes present
in the literature into three categories: (1) an isolated block (Davies, 1978; McKee and
Cox, 1974); (2) organized and pattern-repeated cloud group (for instance, Blerkom,
1971; and Welch and Wielicki, 1984); (3) stochastic cloud patterns (Zuev et al., 1987).
The stratocumulus clouds that we simulate in this study are well fitted by the category 2.

In this study, our principles for handling different shapes of clouds are quite
similar to Welch and Wielicki's research (1984); however, we add a few procedures as
follows:

1. Determine the smallest element of the alignment pattern called the unit cell
(Figure 2.4). The highest point of the cloud is set to be Z,,,.

2. Regardless of the variation of cloud height in this element, divide this element
into boxes of equal size (Figure 2.4).

3. Insert N, photons into each box at the center of each box at Z,,,. Calculate the
location that photons would enter into the cloud as the starting point of the photon
tracking process.

4. Track photons.

5. If a photon leaves the cloud, check if it would enter the adjacent cloud element
or if it has already been reflected or transmitted.

6. Calculate the free path of a photon that crosses the clear region.

7. Apply the concept of periodic boundary conditions so that a photon that enters
an adjacent unit cell is wrapped around to re-enter the original cloud unit cell (Figure
2.4).

8. Go back to step 4.

9. After tracking all the photons, count the number of photons exiting from the

top of each box (at Z,).



Figure (2.4) A schematic diagram for the unit cell, equal size boxes inside the unit
cell, and how photons are wrapped to the unit cell when they go out to adjacent unit cell.
In the diagram, the unit cell is uniformly divided into 16 photon collecting boxes. The X’
marks where incident photons enter the unit cell. A sample of photon wrapping is denoted
by the thick line: O is the starting point; F is the real destination; F' is the destination after

wrapping.



10. The reflectivity of each box is just (Noyup / Nin)j th box- Figure 2.5 is a
concise flow chart for the whole procedure.

The bulk reflectivity of this particular cloud pattern is just the mean of the
reflectivity of the equal-area boxes, or the total number of photons exiting from the top
divided by the total number of photons inserted. Comparisons of our results with Welch

and Wielicki's research (1984) are displayed in Figure (2.5) and (2.6).

232 Statisti

This leads us to the statistics question. What is the size of the photon collecting
boxes and the number of incident photons per box needed to capture the 2-dimensional
probability density function of reflecting photons, p(x,y; x’y"), which is itself a function
of the location where photons are inserted? Here, (x,y) is the location where photons
leave the top of the box, and (x',y'") is the location where photons are inserted into the
cloud element.

To calculate the reflectivity of a homogeneous cloud deck, we just count the
photons exiting from the cloud; we don't care where they come out. However, the
location where photons exit is important in the case of inhomogeneous clouds.

The analysis of the 2-D distribution of reflecting photons from homogeneous
clouds provides a stepping stone for this problem. Figure (2.7.a), (2.7.b), and (2.7.c)
respectively show the cumulative spectrums along the x axis, y axis, and the 2-D
distribution of photons reflected when 2500 photons are incident on a homogeneous
cloud deck at (0,0). Also, the width of the photon collecting boxes is 15 mean free path.

Photons were inserted with a direction pointing toward negative x; hence, the
cumulative spectrum along y axis is more symmetric than that along x axis. It is logical
to think that if we insert enough photons, we can resolve the 2-D probability density

function within satisfactory degree. Moreover, the smaller the collecting box size is, the
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Figure (2.7.c) The 2-D probability density function for an infinite, homogeneous,

non-absorbing cloud deck. The incident azimuth angle is 15°, the cloud optical depth is

16, g is 0.86.



more incident photons are needed in order to get the detailed structure of the 2-D
probability density distribution.

For inhomogeneous clouds, every point at which photons are inserted into the
cloud has its corresponding 2-D probability density function of reflecting photons, but

the function is more skewed or asymmetric than that of the homogeneous cloud deck

because of cloud geometry or varying b.,,3. By overlapping the 2-D probability density

functions, that is to say Refp=j jp(x,y;x‘,y‘ )dxdy, we can obtain the reflectivity of

each point. In addition, we want the size of the boxes large enough to capture the
structure of the 2-D probability function and small enough to capture the geometry of the |
cloud.

Now we can go back to explain the reason why we don't care where photons
come out for the homogeneous cloud deck. Because the 2-D probability distribution is
the same for every point in the infinite, homogeneous cloud, overlapping the probability
distribution is equal to just counting the reflecting photons. From the above discussion,
the Gaussian approximation to the binomial distribution is not applicable to describe the
statistics of Refy, because Ref;, is not a constant. Nor is it suitable for Refy, because

Ref,= ]‘ Ip(x,y;x‘ .y )dxdy.

—B0—00



Chapter 3

FIRE DATA

The radiation and cloud microphysics data collected by the NCAR Electra flight
2, which was carried out on June 30, 1987 during the FIRE marine stratocumulus
observations, are of prime interest in this study. A GOES satellite image for flight 2 is
shown in Figure (3.1), in which the flight path has been dotted. The cloud field can be
categorized as a solid stratocumulus deck with occasional breaks. A lidar flight leg
(referred to as leg 5 in the later text) with its corresponding turbulent flight leg (referred
as leg 3 in the later text) are chosen for our simulation.

Because of the differences in time and space of these two flight legs (Figure 3.2),
we can not overlap the two data sets and obtain the correlation of the microphysics data
and radiation data. However, some interesting information can be extracted from these
data. Section 3.1 and 3.2 will describe the general cloud condition, and instruments used

in leg 3 and leg 5.

3.1 Legl

Leg 3, in which the aircraft flew at a mean altitude of 790m above sea level, was
carried out from GMT 20:10 (hour:min) to 20:20, which happens to be coincident with
the time the satellite image (Figure 3.1) was taken. As it is shown from Figure 3.1 and
from the summary of the cloud conditions in (Kloesel et al., 1988), the top of each

individual cloud unit was solid, yet the cloud field as a whole was broken.
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The cloud microphysics data - the mean diameter (H), standard deviation (0),
number density (N;) and the liquid water content (LWC) - measured by the forward
scattering spectrometer probe (FSSP) and by the 260X one-dimensional optical array
probe are exploited. The FSSP, which has 15 channels, primarily sizes and counts water
droplets from 0.5 Um to 45 um in diameter, while the 260 sizes particles from 10 um to

620 pm in 10 pm increment.

The definition of d and o follow basic statistics. d is simply the arithmetic

average of all cloud droplet diameters:
d=Y fd, 3.1)

And o is calculated as:

c= J(i fd?*)-d’ (3.2)

And LWC is computed by:

LWC=p, %Efidf (3.3)

i=l
, where f; = number density of particles in channel i, d; = diameter which channel i

m
represents, m = number of channels, and p,, = the density of water. And Ny = z f;.
i=1

It should be noted that the LWC is not equal to p,, %53. Also, these definitions

of d and o are different from the definitions of the geometric mean diameter and the
geometric standard deviation of the log-normal distribution of cloud droplets, which is

commonly used in calculating the extinction cross section, the asymmetry factor and the



single scattering albedo in a standard Mie scattering code. See Section 4.1.1) for
detailed illustrations.

Figure (3.3.a) and (3.4) show d, N4 and LWC measured by the FSSP and by the
260X along leg 3. However, the x axis is intentionally reversed, because the flight
directions of leg 3 and leg 5 were opposite (Figure 3.2).

The Ny and LWC in the Figure 3.3.a have the same tendency to increase from
cloud edge to cloud center and decrease from cloud center to the opposite cloud edge,
especially between 47 km and 39 km, and between 32 km and 27 km. Yet, d stays fairly
constant inside of these two cloud blocks despite the existence of small fluctuations in its
value. The other cloud blocks did not show apparent correlation among d, Ng4 and LWC.
The d and © are plotted in Figure (3.3.b). The ¢ was magnified 10 times in order to
show its correlation with d. Inside the two larger clouds (Figure 3.3.b), ¢ does not
change much.

However, d, N4 and LWC measured by the 260X (Figure 3.4), which is designed
to measure the larger cloud droplets, did not demonstrate particular correlation in any of

the cloud blocks.

32 Legd

Leg 5, in which the aircraft flew with a mean altitude of 1400m above the sea
sﬁrface, or about 530m above the average cloud top height, was conducted from GMT
21:09 to 21:20, approximately one hour after leg 3. The stratocumulus clouds of leg 5
became more solid than the previous flight leg (Kloesel et. al., 1988).

Figure 3.5 shows the equivalent brightness temperature, shortwave broad-band
albedo and the cloud top height collected during this flight leg. The equivalent
brightness temperature was transformed from the upwelling radiance measured by a 2°-

field-of-view nadir radiometer within the atmospheric window region (10 - 12 um).
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Shortwave broad-band albedo was calculated by dividing the upward shortwave flux
measured by a downward-looking broad-band pyranometer by the downward shortwave
flux measured by the similar instrument looking up. It has been verified that the
downward flux was rather uniform along the flight path; therefore, there were no clouds
necessary to be considered above the stratocumulus cloud deck. A downward looking
lidar measured the cloud top height.

As is shown in Figure 3.5, generally, the equivalent brightness temperature shows
good positive correlation with the cloud top height. However, at the edge of the clouds,
(holes in the cloud field are around 10-11 km and 37-38.5 km in the plot), the slope of
the cloud top height is sharper than that of the equivalént brightness temperature. The
explanation for this phenomenon is that lidar is a fairly sensitive detector of the existence
of cloud droplets. The cloud top height is essentially the height at which the lidar detects
a return signal from some volume containing cloud droplets. It is believed that there are
still some cloud droplets scattering randomly in the breaks of clouds. Thus, using the
cloud top height to infer the shape of cloud could underestimate the width of holes at the
cloud top.

The detected brightness temperature, however, relies much more on the cloud
optical depth beneath the aircraft. For two clouds with the same LWC but with different
number density, the cloud optical depth of the cloud with greater number density is
larger. Yet, two clouds with the same number density but with different LWC, the one
that contains more liquid water has larger optical depth. At the edge of clouds, the
mixing of the moist air of clouds with the dry entrained air could result in a decrease of
number density but an increase of the mean diameter. Both of these two changes will
cause a decrease of the cloud optical depth at the edge of clouds.

The most interesting feature of Figure 3.5 is that the albedo changes drastically
from 0.1 to 0.65 while cloud top height and equivalent brightness temperature are fairly

smooth except at the edge of clouds. The albedo maxima at 20 km and 30 km are



coincident with the two small increments in cloud top height in the second cloud,
whereas no obvious cloud top maximum is observed corresponding to the albedo
maximum of the third cloud. It can also be recognized easily that the albedo declines
almost linearly from the peak to the trough, or from the center of clouds to the edge of
the clouds.

The decrease of albedo at the cloud edge could result from the decrease of the
optical depth at the cloud edge. Moreover, some photons which were originally inserted
on clouds will leak out at vertical sides at the cloud edges causing additional decrease of
albedo. The following chapter will discuss these two assumptions based on our

simulation results.



Chapter 4.

Simulation Results

Our motivation for the simulation originated from the plots of solar reflectivity
and cloud top height along the flight path of FIRE Electra flight 2 Leg 5 (Figure 3.5). As
it is shown on the figure, the cloud top height except at the edge of the cloud is rather
uniform while the solar reflectivity shows a wave like pattern, which has its trough at the
hole and its ridge at the cloud center.

Two factors could contribute to this phenomenon: the geometry and the
alignment pattern of clouds, and the variation of cloud optical properties inside the cloud.
The goal of these simulations is to identify which of the two factors is more important in

this case.

4.1 Strategy

Basically, two types of cloud field are used in our simulations of the visible
radiation field. The cloud geometry and alignment pattern are considered in all of our
Monte Carlo simulation experiments, but each experiment is with different degree of
geometry effect. However, b,,, remains constant in the first type of experiments, but it
varies in space in a specified pattern in the second type. By comparing the result of each
experiment with the observational data, we can obtain insight to the above cloud shape
versus cloud optical properties problem.

Meanwhile, the IR observational data can serve as an additional check to our
simulations. We can calculate the IR radiation field corresponding to each simulation

experiment and compare it with the observational data. Beside this, we can also check



our assumptions of optical properties of the clouds with the cloud microphysical
properties observed.

In order to fulfill the comparisons mentioned above, a standard Mie scattering
code, the IR hemispheric mean code, and a flux extrapolation scheme are introduced into

this study. The following sub-sections briefly discuss these schemes.
(11 Mi teri i

The volume extinction cross section Gy, (unit = [L2]), the asymmetry factor g,
and the single scattering albedo @ of a specified log-normal distribution with geometric
mean radius r, and geometric standard deviation G, are calculated by the Mie scattering
code. The log-normal distribution of cloud droplets is assumed as follows:

-1 Inr—In

FO T B 10
N(]M)"inlncg expl5-( Inc, Yl @.D.

The relation between T , the mean radius of cloud droplets (d/2, d is defined in
Section 3.1) and Iy isT = T, expf[0.5(In 03)2], when the log-normal distribution of
clouds is applicable.

The theory of Mie scattering is not reviewed here. This sub-section only focuses
on how wé choose reasonable values for rgand o, to obtain satisfying values of Gy, g

“and ©,.

Figure (4.1) series show plots of contours of G, and g at 0.6 pum for different r,
and 0,. @ is not shown because it ranges from 0.999988 to 0.999999. The range of 1,
and o, in the plots covers a plausible range of r; and G, in stratiform, non-precipitating

water clouds. We can conclude that, for this type of cloud, the spectrum of cloud droplet
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Figure (4.1.a) The contours of volume extinction cross section at 0.6 um as a
function of the geometric mean radius and the geometric standard deviation. Contour
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distribution does not affect the value of g and @y much. The values @y = 1 and g = 0.86
are fairly reasonable.

However, the contours of O,,, g and @, at 10 pm are rather complicated.
(Figure 4.2) We shall examine how we choose representative values of 0.y, g, and @
for our IR check in section 4.5.

All the values of refractive index for water in this study are from Hale and Querry

(1973).

£12 The Hemispheric Mean 2-S Techni

The Monte Carlo method is more complicated for IR radiation because the
emission of photons also has to be considered. Therefore, the hemispheric mean 2-
stream technique is selected to give us a first degree of approximation of the IR radiation
field of a horizontally inhomogeneous cloud. The details of the hemispheric mean
technique is described in Toon et al., 1989. A few approximations are made when the
technique is applied to the calculation of IR field.

First, we assumed that the temperature in the cloud deck is constant. This is
actually a reasonable approximation. The value of a saturated adiabatic lapse rate at
these temperatures is around 6°C in the lower troposphere; thus, for a cloud deck whose
depth is only 200 to 300 meters, the change of temperature from cloud bottom to cloud
top is only around 1.5 °C.

Second, the ocean is assumed to be a blackbody. In another words, the
absorptivity and emissivity of the surface are equal to 1 in our IR calculation.

Then, we can write the equations as follows:

F =k;ef" + Tkye €' + C+ 4.2),
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Figure (4.2.a) The contours of volume extinction cross section (um?2) at 10 um as
a function of the geometric mean radius and the geometric standard deviation. Contour
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F= I"kles" + k2e-81 +C (43),

where F = upward flux,
F = downward flux,
C*=C- = 2muB(Ty),
uy =172,
T, = cloud temperature,
B(T,) = plank function at temperature T,
e =?-1A"%
=/ +e),
N =2-T(1+g),
Y2 =W (1- g).
The boundary conditions are substituted into (4.1) and (4.2) to obtain k; and k,:

Ftr=0)=0,

F (1= 1)) = 1B(T,),

where 1_ is the IR optical depth of the cloud, and T; is the surface temperature.

4.1.3 The Flux Extrapolation Scheme

The purpose of this scheme is to extrapolate the reflectivity at the cloud top to
some distance above the cloud deck. The observed albedo data was acquired when the
aircraft was around 500 m above the cloud. We have to consider the extrapolation
because the horizontal variability in reflected flux at the cloud top.

In this scheme, first, we assumed that clouds are diffuse reflectors. That is to say

the intensity reflected is isotropic. Therefore, F(x,y,z)) = nl(x,y,z,). However, the



intensity at z=z, + Az (where Az is some incremental height above the cloud top) is not

isotropic,I(x,y,zy + Az;0,0). The flux at z =z, + Az is then equal to
F(x,y,7, + Az) = [J(x,y,2, + 4z; ©,0) cos Osin O dO dp  (4.4).

We have assumed that no scattering and absorption occur within the Az atmosphere
column above the cloud. There are two ways to solve this integral. The first is more

mathematical.

(x'-x)2+y)"”  9(8,9) icdy (45).

F(x,y,zo+Az)=”I((x'—x),y,zo)Az(( 4y +A2) (. ¥)

See Figure 4.3 for illustration. This is only a change of variables for the double integrals

96,9 . 00 3¢ 00 9¢
by using the Jacobian factor. The Jacobi is simpl alto —————-.
y using the Jacobi r. The Jacobian ——— 32 .y) imply equ ox 3y 3y o
Thus we can rewrite equation (4.5) as:
Az}
F(x.y,7, + az) = ] [ I(x',y,7,) —dx' dy (4.6).

((x'-x)* +y* +2%)
The second derivation contains more physics. We can rewrite (4.4) as:
F(X, y,7, + Az) = | (Q) cos © dQ 4.7,

because dQQ = sin @ d© d¢. Since a horizontal surface element dA = dx' dy, on the z = z;

| plane subtends a solid angle dQ = %%“—"-"-, where dA_;, is the projection of dA
r

orthogonal to the direction r, (4.7) becomes:

F(x,y,z, + Az) = J I(x',y,z,) cos @ AA s (4.8).



I (x,y,2,+Az;0)

I(x’,y2,)

Figure (4.3) A schematic diagram of the geometry of the radiance at cloud top

and the radiance at Az above the cloud.



Furthermore, because dA 4, = cos © dA,

dx' dy 4.9).

! 2
F(X,Y,Zo + AZ) = J I I(X »Ys 202) Cos 9

By substituting cos © = E and r = ((x-x)? + y2 + az?)!72, equation (4.9) eventually
r

becomes (4.6).

Moreover, in our simulations, the intensity at the cloud top is constant with
respect to y, because cloud geometry does not vary in y direction. (See section 4.2 for

detailed descriptions.) Equation 4.6 can be further simplified into:

AzZ?
[y +((x'—x)* + Az)’]

F(x,y,z + Az) = | I(x',z,) { | dy} dx'

AZZ
d '
(x'—X)2 +AZZ]3I2 X

1 L
_I—z- nI(x,z,,)[

AZZ
d '
(xl_x)Z +AZZ]3IZ X

_E
—ZIR(x,zo)[

Az2
[(xi __x)2 +A22]312

- -I;_ T R(x,2,) ax (4.10),
where F, = incident solar flux on cloud, R(x;,z,) = the reflectivity at (x;,z,). Equation
(4.10) is the equation we use to convert the reflectivity at the cloud top calculated by the
Monte Carlo method into an upward flux at 500 m above the cloud top.

The upper limit of ax for the convergence of (4.10) has been carefully examined.

We use an infinite homogeneous cloud deck of which the reflectivity is constant in space

?



as our first-step approach to the convergence problem. It is found that when az = 500m,
200m is the upper limit of ax. Therefore, the size of the photon collecting boxes could
not exceed 200m in width in our simulations.

Az}

Ax serves as a weighting factor of
A, ~x)2 + A" ghtng

From another perspective,

the reflectivity at R(x;,z,) for the calculation of F(x,y,z, + Az). Let's see the situation
when Az = 500 m and ax = 200 m. When (x;-x) is equal to zero, the weighting factor is
0.2; when (x;-x) is equal to 1 km, the weighting factor drops to 0.018; and when (x;-x) is
equal to 5 km, the weighting factor further decreases into 0.0002. Furthermore, we have
estimated that if the intensity were isotropic, about 90 % of the measured flux would be
contributed by reflected intensities from cloud top within a width of 1.1 km around the

aircraft which is at a height of 500 m above cloud top.
12 Simulations by the Monte Carlo Method

From the satellite image (Figure 3.1), we can see that the clouds along the path
that the airplane flew are of the cloud-street type. Thus, in our simulations, the x axis is
defined as the flight path. We assumed that the clouds extend to infinity in the y
direction, and the geometry and cloud optical properties are only functions of x. That is
to say, the unit cell (defined in Section 2.3.1) is an infinite cloud strip extending along y
axis. As a result, the reflectivity at the cloud top remains invariant in the y direction.
Because of this simplification, we need only collect outgoing photons along the x axis
when they leave the cloud.

Table 4.1 lists all the constants necessary to be specified in order to execute the
simulations and the values that we choose.

The incident solar zenith angle ®, and the incident solar azimuth ¢, are calculated

by the following equations (Spencer, 1971):



Symbols Descriptions Values
Incident angles Oy Incident zenithal angle 165°
9, Incident azimuthal angle 90° or 0°
Cloud geometry H Cloud depth 260 m
Wi Width of the hole at cloud bottom 1 km
W, Width of the cloud at cloud bottom 26.1 km
Optical properties g Asymmetry factor 0.86
©, Single scattering albedo 1
bext, 2=0.6 pm Volume extinction coefﬁcientr 0.06154 m-1*
I, Mean free path 16.25 m
Box width Ax Width of a photon collecting box 200 m
Surface albedo A, 0

Table (4.1) The list of all the constants in the simulations and their values . *In

experiment 3 and 4, the volume extinction coefficient decreases linearly, or quadratically

from 0.06154 at the cloud center to 0 at cloud edges.




cos ©,=sin 0 sin 8 + cos B cos dcos h (4.11), and

sin ¢, = -cos d sin h / sin O, 4.12).
In the above two formulae, 0 is latitude.

d (in radian) = 0.006918 + 0.399923 cos ¢, + 0.070257 sin ¢, - 0.006758 cos 2¢, +
0.000907 sin @, - 0.002697 cos ¢, + 0.001480 sin 3¢, (4.13)

(¢, =2nd_ / 365, d, is the day number ranging form 0 on January 1 to 364 on December
31), and h is the hour angle, which is symmetrical about solar noon in terms of the local

apparent time.

local apparent time = clock time + longitude correction + 0.000075 + 0.001868 cos(¢,) -

0.032077 sin () - 0.014615 cos (2¢,) - 0.04849 sin (2¢,) (4.14)

However, we did not use the ¢ = 295° (0° is south, and the angle rotates
counterclockwise), calculated according to Spencer's formulae. The reason is that there
is too much uncertainty embedded in calculating the inéident azimuth angle given our
arbitrary coordinate system. Instead of using an uncertain azimuth angle, we decide to
input photons at ¢, = 90° and 0° (0° points to the positive x direction, 90° points the
positive y direction and so on) for the incident azimuth angle in our simulations.‘ In the
case of 90° azimuth angle, the vertical cloud side effect should be the smallest, and at 0°
it should be the largest.

H, W, and W, are obtained by averaging leg 5 data. However, the ceiling height
was determined by another earlier flight.

Section 4.1.1 has already discussed the values for g and ©,. Instead of averaging

the microphysics data to acquire b, ; at visible wavelengths, the beyj—0eum Was

estimated from the reflectivity data. From the Monte Carlo code for homogeneous



clouds, we found that the optical depth is around 16 for clouds of reflectivity 0.55, which
is the mean value of reflectivity around cloud center (Figure 3.5). We then divided cloud
depth (260 m) by the optical depth 16 to get the mean free path. Discussions about this
simplification is in Section 4.3.

The upper limit for the convergence of our flux extrapolation scheme, 200m, is
used as the width of the photon collecting boxes. The ocean is assumed to be black in
the visible wavelengths. In fact, this assumption is reasonable (Figure 4.4) since the
zenith angle is small in this case.

Table (4.2) summarizes the four simulations we conduct. Experiment 1, in which
the geometry effect is minimum and b, is constant, serves as the control mode of the
simulations. In experiment 2, the cloud geometry effect is a maximum. In this run, the
cloud geometry is most similar to the cloud top height data. Experiment 3 and 4
investigate the effects of a variation of b,,, on reflectivity with small cloud geometry
effect. Figure (4.5) displays the three kinds of cloud shapes used here in comparison
with the cloud top dat; of leg 5.

In experiment 3 and 4, because of our simplification of tracking photons through

a b,,, varying medium (Section 2.3.1), one potential problem rises when photons collide

ext

with cloud droplets near cloud edges. At the edge of cloud, the mean free path (1/b,,)

will increase drastically; therefore, we will overestimate free paths (Equation 2.12).
- 4.3 Results

Figure (4.6) shows the results of the four simulations. The azimuth direction of
the incident photons points to the positive x direction in each case.

As it is shown on the plot, the results of simulation 1 and simulation 2 are similar,
even though the reflectivity of simulation 1 varies slightly sharper in the vicinity of the

cloud edge. This is not a surprising result, because, from Figure (2.7), the cumulative
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Cloud shape Descriptions b.., Descriptions
Rectangular | Rectangular cloud Constant
blocks
Trapezoidal | Trapozoidal cloud Constant
blocks with a width
of 26.1 km at bottom
and a width of 22.1
km at top
With Cloud edge is Linear b.,: decreases linearly
rounded edge | rounded with a radius | variation from 0.06154 m1t0 0
of 260 m from cloud center to
cloud edge
With The same as Quadratic b, decreases
rounded edge experiment 3 variation quadratically from
0.06154 m'! to O from
cloud center to cloud
_ edge

Table (4.2) Descriptions of 4 experiments.




"p pue ¢ wownadxo 107 our] panop A ‘g Juswadxa J0J Jur] poysep
oy ‘repr Aq pansesw doj pnopo J0j duTl Prjos 9YL ‘¢ pue ¢ 1uswniadxd JO 1Ryl 03 950[0
K394 ST “30A9MOY Sumoys jou ST 1 Juswnadxa Jo 1Sty doy pnopo ayy, “p ¢ ‘7 uomuadxod

Joj 1ey) pue Jepy Aq pamsesw yStoy doy pnopo Jo 1o01d 9yl (S'p) 2inSig

(w) x

- V0

i

- 90

- 60

(uny) 1y31ay dog, pnop)



"p uaWLIadXa 103 QUI[ PONOP-PaYSEp Yy pue ‘g Juswniadxa 10§ Suy prIos Ay ‘7 Jusumadxa
10y aur] panop Yy 11 IudWLIAdXd $I)0UIP Sl paysep SYJ, ‘.0 ST Sue YINWIZE JUIPIOUT

oyl ‘punop jo QS ol e 3:0::.5%0 .58 uo.« ovoﬂa .“o BE v ©O%p) Esmﬂ

(w) x




probability density diagram in the x direction, in which the optical depth is 16, and the
incident azimuth angle is 15°, shows that the probability of photons reflecting from the
cloud at a distance 75 times the mean free path is very small. Thus, the geometry effect
could only possibly affect the radiation field about 1 km from the starting and the ending
points of the geometry variation. For example, for experiment 1, the geometry only
affects the reflectivity between 36.1-39.1 km, for experiment 2, between 34.1-41.1 km.

In contrast, the results of simulation 3 and 4 show more gradual change of
reflectivity from the cloud center to edge. Except near the center of the clouds where the
- reflectivity of experiments 3 and 4 are almost the same, the reflectivity of experiment 3 is
less than that of experiment 4. This is consistent with the optical depth variation of the
two experiments. (Figure 4.7)

Similar experiments were conducted to investigate the azimuth angle effects.
This time, the incident azimuth angle was set to be 90° that is to say, the incident
azimuth angle is directed along the positive y direction. Figure (4.8) is a series of
comparisons of two extreme incident azimuth angles for each of the four experiments.
From figure 4.8, there are no obvious differences between the 90° and 180° cases. The
original conjecture of these experiments was that the reflectivity of 180° incident azimuth
angle would be larger than that of 90° cases at the vicinity of cloud, because the vertical
sides of clouds would reflect more photons for 180° cases. However, we can not see
obvious differences at the vicinity of clouds. Possible reasons are the incident zenith
angle is too close to that of solar noon, and the fractional cloud coverage is near unity.

Since the difference between 90° and 0° cases is not obvious, only the 0° cases
are used in the discussions below. We now apply the flux extrapolation scheme to the
raw results. Figure (4.9) is a series of comparisons between the cloud-top results and the
extrapolated results. From these figures, we can conclude that the flux extrapolation

scheme smoothes the variability of the Monte Carlo method. Also, the reflectivity of the
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hole increases after extrapolation due to side effects. This is consistent with our
discussion of the flux extrapolation scheme in Section (4.1.3).

We can plot these modified results with our observational data (Figure 4.10). The
observed albedo matches fairly well with the experiment 4 in the left part of the cloud.
At the hole, both experiment 3 and 4 underestimate the reflectivity but only with an error
about 0.05, which is close the 5 % sea surface reflectivity for small azimuth angles in
Figure (4.4). At the right cloud block, the observed albedo first agrees with the
reflectivity calculated by experiment 4 and then it becomes smaller than that of
experiment 3 with a discrepancy about 0.05 in maximum. Both experiment 1 and
experiment 2 are unable to create a gradual change of reflectivity from cloud center to
cloud edge. They only match the observed data well at the hole. Thus, this implies the
geometry effect alone is not sufficient to result in the albedo change of observation.

Now, the IR data are used to check our results. First of all, we have to determine
the g, @y and G,,, for IR at 10 pum. The log-normal distribution of cloud droplets
assumed in the Mie code is checked from data (Figure 4.11). We found that the log-
normal distribution assumption is good when the cloud is solid, or when the observed
data is at the center of clouds. The cloud microphysical data is then used to obtain the
geometric mean radius and geometric standard deviation for those sets satisfying the log-
normal distribution. The points with "+" symbols in Figure (4.12) are sets of the Z and
G, calculated from observational data.

In section (4.3), we have mentioned that the value of the extinction coefficient in
the visible is set to be 0.0654 m-l. However, from the observational data, the number
density of cloud droplets is around 30 to 55 per cm3. Even if the maximum 55 per cm3 is

input for the calculation of extinction cross section:

extinction coefficient = volume extinction cross section * number density (4.11),
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Figure (4.11) The scatter plot of the standard deviation calculated from measured
LWC and d by FSSP using the log-normal cloud droplet distribution assumption (y axis)
and the standard deviation measured by FSSP (x axis). The straight line denotes cases

that perfect matches of the two standard deviations take place.
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Figure (4.12) The scatter plot of the observed geometric mean radius and
geometric standard deviation (denoted by +) which satisfy the log-normal cloud droplets
distribution during leg 3. The units for both the geometric mean radius and geometric

standard deviation are in pm. Meanwhile, the contours of the extinction cross section (U

m?) at 0.6 um are also shown.



the value of extinction cross section is about 1.0x10™ m?, which does not fit our cloud
droplet distribution data (Figure. 4.12).

Yet, it is found that the CCN (cloud condensation nuclei) concentration in the
boundary layer was around 70 to 150 per cm3 (Albrecht, personal communication). If
we choose 75 per cm3 and substitute into equation (4.11), the extinction cross section
matches well with the cloud droplet spectrum observed. The cause of the discrepancy
between the observed cloud droplet number density and the CCN number concentration
may be that the FSSP does not measure all droplets.

From this procedure, E= 9.5 um and G,=1.4 pm are used to obtain the IR
extinction cross section, IR asymmetry factor, and IR single scattering albedo. The
values of these radiative properties are 900 um?2, 0.93, and 0.68 respectively.

The 2-stream hemispheric mean scheme is then used to calculate the brightness
temperature of these four types of clouds. The results are shown in Figure (4.13).
Again, the geometry alone could not match the measured brightness temperature.
However, when the extinction coefficient decrease linearly or quadratically from the
cloud center to the cloud edge, the calculated brightness temperature are close to what is
observed.

In our experiments 3 and 4, the extinction coefficient varies. However, the
asymmetry factor and single scattering albedo were held constant. Even though that the
asymmetry factor and single scattering albedo remain rather constant for common cloud
droplet spectrum for visible radiation, the variation of the asymmetry factor and single
scattering albedo in the IR is not negligible. By this, in our simulation, the cloud ;iroplet
distribution is assumed to be invariant in clouds, while the number density changes from
cloud center to cloud edge. In fact, if we go back to Figure (3.3.2), it is clear that

between 47 km to 39 km and between 32 km to 27 km of our arbitrary coordinate that

the E and o, stay rather constant while number density increases from cloud edge to
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cloud center and decreases again near the cloud edge. However, because the time and
space difference of leg 3 and leg 5, direct comparison is impossible. »

One of the potential problem in these simple simulations is that the vertical
variation of cloud microphysical properties is not considered. It is suggested that the
vertical variation of cloud optical properties could be included and the effective particle
radius of clouds (Nakajima and King, 1990) could also be applied in the further
simulation of the radiation field of broken cloud field.

It should also be emphasized that, in this study, it is not the detailed quantities in
which we are interested. But after analyzing of our results, we can conclude that for the
case studied in these simulations, cloud geometry alone could not explain the drastic
variation of reflectivity detected from the airplane, nor the brightness temperature
variations.

Further studies of broken clouds would be valuable especially in collecting cloud
microphysical data; for instance, mean radius, standard deviation and number density as
a function of relative position in clouds. Therefore, a better understanding of
stratocumulus clouds could be achieved, because these simulations infer the drastic
differences of radiation field between plane-parallel clouds and its corresponding broken

clouds in which the cloud optical properties change from cloud center to cloud edge.



Chapter §

CONCLUSION

The Monte Carlo method was applied to simulate the visible radiation field over a
broken cloud field. Four experiments have been conducted to reproduce the reflectivity
and the brightness temperature measured in FIRE Electra flight 2 leg 5. One most
significant feature in this flight is that the albedo varies almost linearly from 0.6 at cloud
center to 0.05 at the holes between clouds, while the brightness temperature and the
cloud top height remain unchanged through out the clouds.

The results suggest that the cloud geometry alone could not count for the change
of albedo and the brightness temperature from cloud center to cloud edge. Both
experiment 1 and 2, in which only the cloud shape effect is considered, fail to mimic the
observed data. In contrast, both experiment 3 and 4, in which both the cloud effect and
the variation of optical properties are considered, get consistent results with the measured
data. It is the change of cloud optical properties inside the clouds more possible to be the
main cause of what has been observed.

Assumptions and approximations in the simulations require further careful
studies, especially for the building of a more accurate and fast way to generate free paths
in a inhomogeneous medium.

In experiment 3 and 4, we vary the extinction coefficient linearly or quadratically
from the cloud center the cloud edges. Because the extinction coefficient is a product of
the cloud droplet number density and the volume extinction cross section, extra caution is

needed to infer our results to the variation of microphysical properties inside the clouds.



In Section (3.2) we have demonstrated that the observed mean radius and its
standard deviation in Flight 2 Leg 3 are rather constant in comparison to cloud droplet
number density and LWC. Also, results of experiment 3 and 4, in which we assumed
that the cloud droplet spectrum remained unchanged through out the cloud but only the
cloud number density changed, are similar with the albedo and brightness temperature
observed.

Conventionally, we think the cell structure of stratocumulus clouds is caused by
the rising motion at cloud center and sinking motion at cloud edges. The cloud droplets
will grow in the ascending air; however, when they reach the cloud top, they will mix
with the entrained dry and warm air which are from the inversion above the cloud and
start to evaporate and sink. The adiabatic warming in the descending motion will further
contribute to the evaporation of cloud droplets. Smaller cloud droplets will soon vanish
in the descending branch of vertical motion; meanwhile, a shift of cloud droplet spectrum
toward larger cloud droplets is expected.

Yet, how does this argument link with the observed microphysical data and the
simulation results? Why is the change of cloud droplet spectrum not observed? Why do
we get good results when the change of cloud spectrum is not considered? Does that
mean the shift of cloud droplet spectrum is small compared to the evaporation of smaller
cloud droplets? More studies about the microphysical structure of stratocumulus clouds
are needed to answer these questions.

It is also conjectured that whether the case studied here represents a typical case
for stratocumulus clouds or not. First, the case we studied was at around solar noon, the
cloud vertical side effect was actually at the minimum situation. Second, the horizontal
scale of the breaks of the clouds is much smaller than that of clouds. Third, the clouds
are approximately semi-infinite in geometry, because their horizontal scale (~25 km)
overwhelms the effective width (~1 km) of the 2-D probability distribution of its

homogeneous counterpart. Indeed, for those stratocumulus clouds that the fractional



coverage of cloudy area is smaller and that the size of the cloud is comparable to the
effective width of their 2-D probability distribution of reflected photons, the cloud
geometry effect could be much more important. However, if this case is representative,
not only the effect of cloud geometry but also the variation of cloud optical properties

must be considered in the climate models.
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